首页> 外文OA文献 >Dynamic model of supercritical Organic Rankine Cycle waste heat recovery system for internal combustion engine
【2h】

Dynamic model of supercritical Organic Rankine Cycle waste heat recovery system for internal combustion engine

机译:内燃机超临界有机朗肯循环余热回收系统的动力学模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The supercritical Organic Rankine Cycle (ORC) for the Waste Heat Recovery (WHR) from Internal Combustion (IC) engines has been a growing research area in recent years, driven by the aim to enhance the thermal efficiency of the ORC and engine. Simulation of a supercritical ORC-WHR system before a real-time application is important as high pressure in the system may lead to concerns about safety and availability of components. In the ORC-WHR system, the evaporator is the main contributor to thermal inertia of the system and is considered to be the critical component since the heat transfer of this device influences the efficiency of the system. Since the thermo-physical properties of the fluid at supercritical pressures are dependent on temperature, it is necessary to consider the variations in properties of the working fluid. The well-known Finite Volume (FV) discretization method is generally used to take those property changes into account. However, a FV model of the evaporator in steady state condition cannot be used to predict the thermal inertia of the cycle when it is subjected to transient heat sources. In this paper, a dynamic FV model of the evaporator has been developed and integrated with other components in the ORC-WHR system. The stability and transient responses along with the performance of the ORC-WHR system for the transient heat source are investigated and are also included in this paper.
机译:近年来,以提高ORC和发动机的热效率为目标的超临界有机朗肯循环(ORC)用于内燃机(IC)的废热回收(WHR)。在实时应用之前对超临界ORC-WHR系统进行仿真非常重要,因为系统中的高压可能会引起对组件安全性和可用性的担忧。在ORC-WHR系统中,蒸发器是系统热惯性的主要贡献者,并且被认为是关键组件,因为该设备的热传递会影响系统的效率。由于在超临界压力下流体的热物理性质取决于温度,因此有必要考虑工作流体的性质变化。通常使用众所周知的有限体积(FV)离散化方法来考虑这些属性更改。但是,处于稳态条件下的蒸发器的FV模型不能用于预测当受到瞬态热源影响时循环的热惯性。在本文中,已经开发了蒸发器的动态FV模型,并将其与ORC-WHR系统中的其他组件集成在一起。对ORC-WHR系统用于瞬态热源的稳定性和瞬态响应以及性能进行了研究,并且也包括在本文中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号